Graphic Pulsar Catalogue
Version: 0.1.4
Author: Meng Yu
Contact: vela.yumeng@gmail.com
Copyright © 2023 Meng Yu
All rights reserved.
Graphic Pulsar Catalogue is a public welfare project, aiming at propagating pulsar astronomy. If you're a student who just began a course on or would like to learn
pulsar astronomy, if you're an astronomy amateur who is eager to find an easy-to-see way to learn the academic research results on pulsars, then the Graphic Pulsar
Catalogue is right for you. If you're the one who doesn't have any ideas about pulsars and pulsar astronomy, don't worry, here is a tutorial for you; you may also read
a few lines below.
Like the Sun and other stars you see in the night sky, pulsars are a kind of stars. They are small; their 20-kilometer-diameter is about 70,000 times smaller than the
Sun! They are far; they are thousands of trillion kilometers away from us! Therefore, despite some pulsars also emit lights we see, we cannot see them. And a truth
is that most pulsars don't emit lights we see; they emit in radio band. Radio band is the band in which our mobile phones, television or broadcast work. Does this mean
there is no way for us to 'see' pulsars? Yes, there is! Astronomers use professional radio telescopes to receive and see pulsars' signals. They found pulsars' signals are
pulses appearing with certain short periods, like the pulses of our heartbeats — this is why they are named 'pulsars'! Astronomers further found pulsars' periods are
extremely precise. The only reasonable explanation is pulsars are extremely heavy, and the pulses originate from radiation beams. Thus, astrophysicists believe pulsars
are rapidly-spinning neutron stars.
All right, even if you had no ideas about pulsars and pulsar astronomy, I believe now you must have had some ideas. So your next question would be 'How to use the
Graphic Pulsar Catalogue?' The shortest answer is — click a circle and learn the pulsar's parameters. A longer answer is as follows. When you open the catalogue,
you see a map of 3,319 pulsars; each one is denoted by a circle. The map is under the J2000 equatorial coordinate system; the x-axis denotes the right ascension, and
the y-axis denotes the declination. The map is made with the Gall-Peter's projection, so the equator, where pulsars are dense, is stretched, while the poles, where
pulsars are sparse, are squeezed. As most known pulsars are within the Galaxy, the curve you see in the map tracks the Galactic disc. As using any other maps, you
may also pan or zoom in/out the map. You use mouse wheel to pan and you use ctrl key plus mouse wheel to zoom in/out. If your computer has touch pad, then you
move two fingers to pan and you pinch to zoom in/out. If you are on a mobile device, then you move one finger to pan and you pinch to zoom in/out. The circle's color
indicates pulsar period, blue for less than 10 milliseconds while black for greater than 10 milliseconds. The circle's size, being proportional to DM value's natural
logarithm, indicates pulsar dispersion measure (DM). For those who lack DM measurements, a constant size is used. Where proper motion measurements are available,
a line is drawn from the pulsar. Line direction indicates proper motion direction. Line length indicates proper motion value; the length is two times the value's square
root; the value is the quadrature sum of the proper motion measurement in right ascension and the proper motion measurement in declination. In the first release, pulse
profiles of 166 pulsars are collected. For such cases, circles are filled with colors. When you click or tap a circle, the pulsar's information is shown, including
the radio profile and the measured parameters. All the information is taken from the academic literature. You may see a five-second animation. The animation of the
radio profile mimics the integration of the profile during an obseravation. Most pulsars' individual pulses are too weak to see, astronomers then add them together
to increase the signal-to-noise ratio. For each parameter, the color bar made with all available values shows the distribution of the parameter values; darker color
indicates more counts. The final position of the running pin indicates the parameter value's position in the distribution. Distributions of periods and DMs are in
base-10 logarithm scale. If you know a pulsar's J-name, then you may also type it in the search field and then hit Search.
Graphic Pulsar Catalogue acknowledges the ATNF Pulsar Catalogue (https://www.atnf.csiro.au/people/pulsar/psrcat).
Finally, you're more than welcome to give feedback. A known issue is that, on desktop Firefox, the color bars draw incorrectly, while on mobile Firefox, fine.
All the references are indexed by the SAO/NASA Astrophysics Data System (https://ui.adsabs.harvard.edu):
. Agazie G. Y. et al., 2021, ApJ, 922, 35
. Aloisi R. J. et al., 2019, ApJ, 875, 19
. Barr E. D. et al., 2013, MNRAS, 435, 2234
. Bates S. D. et al., 2012, MNRAS, 427, 1052
. Bhat N. D. R. et al., 2023, PASA, 40, e020
. Bhattacharyya B. et al., 2016, ApJ, 817, 130
. Bhattacharyya B. et al., 2019, ApJ, 881, 59
. Bialkowski S. et al., 2018, Proceedings of the Polish Astronomical Society, eds Rozanska A.,
7, 100
. Bilous A. V. et al., 2016, A&A, 591, A134
. Boyles J. et al., 2013, ApJ, 763, 80
. Burgay M. et al., 2006, MNRAS, 368, 283
. Burke-Spolaor S. et al., 2011, MNRAS, 416, 2465
. Cameron A. D. et al., 2020, MNRAS, 493, 1063
. Camilo F. et al., 1996, ApJ, 469, 819
. Camilo F. et al., 2015, ApJ, 810, 85
. Champion D. J. et al., 2005, MNRAS, 363, 929
. Chen J. L. et al., 2011, ApJ, 741, 48
. Coenen T. et al., 2014, A&A, 570, A60
. Cromartie H. T. et al., 2016, ApJ, 819, 34
. Cruces M. et al., 2021, MNRAS, 508, 300
. Dai S. et al., 2015, MNRAS, 449, 3223
. Damashek M., Taylor J. H., Hulse R. A., 1978, ApJ, 225, L31
. D'Amico N. et al., 1998, MNRAS, 297, 28
. D'Amico N. et al., 2001, ApJ, 548, L171
. Davies J. G., Large M. I., 1970, MNRAS, 149, 301
. Deneva J. S. et al., 2013, ApJ, 775, 51
. Deneva J. S. et al., 2016, ApJ, 821, 10
. Deneva J. S. et al., 2021, ApJ, 909, 6
. Edwards R. T., Bailes M., 2001, ApJ, 553, 801
. Edwards R. T. et al., 2001, MNRAS, 326, 358
. Espinoza C. M. et al., 2011, MNRAS, 414, 1679
. Faulkner A. J. et al., 2004, MNRAS, 355, 147
. Foster R. S. et al., 1995, ApJ, 454, 826
. Good D. C. et al., 2021, ApJ, 922, 43
. Han J. L. et al., 2021, RAA, 21, 107
. Hassall T. E. et al., 2012, A&A, 543, A66
. Hessels J. W. T. et al., 2007, ApJ, 670, 363
. Hessels J. W. T. et al., 2008,
AIP Conference Proceedings of 40 Years Of Pulsars: Millisecond Pulsars, Magnetars and More,
983, 613
. Hessels J. W. T. et al., 2011,
AIP Conference Proceedings of Radio Pulsars: a key to unlock the secrets of the Universe,
1357, 40
. Hobbs G. et al., 2004, MNRAS, 352, 1439
. Jacoby B. A. et al., 2007, ApJ, 656, 408
. Jacoby B. A. et al., 2009, ApJ, 699, 2009
. Johnston S. et al., 2008, MNRAS, 388, 261
. Johnston S. et al., 2018, MNRAS, 474, 4629
. Johnston S. et al., 2021, MNRAS, 502, 1253
. Kawash A. M. et al., 2018, ApJ, 857, 131
. Keane E. F. et al., 2018, MNRAS, 473, 116
. Keith M. J. et al., 2009, MNRAS, 395, 837
. Keith M. J. et al., 2011, MNRAS, 414, 1292
. Kerr M. et al., 2012, ApJ, 748, L2
. Knispel B. et al., 2013, 774, 93
. Kramer M. et al., 1998, ApJ, 501, 270
. Kramer M. et al., 2003, MNRAS, 342, 1299
. Lazarus P. et al., 2015, 812, 81
. Lorimer D. R. et al., 1996, MNRAS, 283, 1383
. Lorimer D. R., Lyne A. G., Camilo F., 1998, A&A, 331, 1002
. Lorimer D. R. et al., 2006, MNRAS, 372, 777
. Lower M. E. et al., 2020, MNRAS, 494, 228
. Lundgren S. C., Zepka A. F., Cordes J. M., 1995, ApJ, 453, 419
. Lynch R. S. et al., 2013, ApJ, 763, 81
. Lynch R. S. et al., 2018, ApJ, 859, 93
. Lyne A. G. et al., 2017, ApJ, 834, 137
. Manchester R. N., D'Amico N., Tuohy I. R., 1985, MNRAS, 212, 975
. Manchester R. N. et al., 1996, MNRAS, 279, 1235
. Manchester R. N. et al., 2001, MNRAS, 328, 17
. Manchester R. N. et al., 2005, AJ, 129, 1993-2006
. Manchester R. N. et al., 2006, ApJ, 649, 235
. Martinez J. G. et al., 2017, ApJ, 851, L29
. McConnell D. et al., 1991, MNRAS, 249, 654
. McEwen A. E. et al., 2020, ApJ, 892, 76
. McLaughlin M., Cordes J. M., Arzoumanian Z., 2000,
Pulsar Astronomy – 2000 and Beyond ASP Conference Series,
eds Kramer M., Wex, N., Wielebinski R., 202, 41
. McLaughlin M. A. et al., 2002, ApJ, 564, 333
. Melatos A., Peralta C., Wyithe J. S. B., 2008, ApJ, 672, 1103
. Michilli D. et al., 2020, MNRAS, 491, 725
. Moffett D. A., Hankins T. H., 1996, ApJ, 468, 779
. Morris D. J. et al., 2002, MNRAS, 335, 275
. Nicastro L. et al., 1995, MNRAS, 273, L68
. Nice D. J., Fruchter A. S., Taylor J. H., 1995, ApJ, 449, 156
. Nice D. J., Sayer R. W., Taylor J. H., 1996, ApJ, 466, L87
. Ng C. et al., 2015, MNRAS, 450, 2922
. Ng C. et al., 2020, ApJ, 903, 81
. Parent E. et al., 2022, ApJ, 924, 135
. Qiao G. J. et al., 1995, MNRAS, 274, 572
. Ray P. S. et al., 1996, ApJ, 470, 1103
. Roberts M. S. E. et al., 2002, ApJ, 577, L19
. Sanidas S. et al., 2019, A&A, 626, A104
. Scholz P. et al., 2015, ApJ, 800, 123
. Sengar R. et al., 2022, MNRAS, 522, 1071
. Serylak M. et al., 2021, MNRAS, 505, 4483
. Spiewak R. et al., 2020, MNRAS, 496, 4836
. Stovall K. et al., 2014, ApJ, 791, 67
. Stovall K. et al., 2015, ApJ, 808, 156
. Tan C. M. et al., 2020, MNRAS, 492, 5878
. Theureau G. et al., 2011, A&A, 525, A94
. Thorsett S. E. et al., 1993, ApJ, 416, 182
. Titus N. et al., 2019, MNRAS, 487, 4332
. Tyul'bashev S. A. et al., 2017, ARep, 61, 848
. Tyul'bashev S. A., Tyul'bashev V. S., Malofeev V. M., 2018, A&A, 618, A70
. Tyul'bashev S. A. et al., 2021, ARep, 65, 1246
. Wahl H. M. et al., 2022, ApJ, 926, 168